Regularization and Error Estimate for the Poisson Equation with Discrete Data
نویسندگان
چکیده
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولGradient Estimate for the Poisson Equation and the Non-homogeneous Heat Equation on Compact Riemannian Manifolds
In this short note, we study the gradient estimate of positive solutions to Poisson equation and the non-homogeneous heat equation in a compact Riemannian manifold (Mn, g). Our results extend the gradient estimate for positive harmonic functions and positive solutions to heat equations. Mathematics Subject Classification (2000): 35J60, 53C21, 58J05
متن کاملSparsity regularization for image reconstruction with Poisson data
This work investigates three penalized-likelihood expectation maximization (EM) algorithms for image reconstruction with Poisson data where the images are known a priori to be sparse in the space domain. The penalty functions considered are the 1 norm, the 0 “norm,” and a penalty function based on the sum of logarithms of pixel values, R(x) = ∑np j=1 log (xj δ + 1 ) . Our results show that the ...
متن کاملA Cauchy Problem for Helmholtz Equation : Regularization and Error Estimates
In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a new regularization method to solve it based on the solution given by the method of separation of variables. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness ...
متن کاملRegularization and New Error Estimates for a Modified Helmholtz Equation
We consider the following Cauchy problem for the Helmholtz equation with Dirichlet boundary conditions at x = 0 and x = π ∆u− ku = 0, (x, y) ∈ (0, π)× (0, 1) u(0, y) = u(π, y) = 0, y ∈ (0, 1) uy(x, 0) = f(x), (x, y) ∈ (0, π)× (0, 1) u(x, 0) = φ(x), 0 < x < π (1) The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. Using a modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7050422